NAME_

ID for the course

1. For each of the following files, write the output from m4. (file a) define(A, 1) A define(`A', 2) A define(A, 3) A

(file b) define(A, B) define(A, C) A B AB

(file c) define(A, 1) define(B, A \$1 define(`A', eval(A+2))) A B A B(1) A B(2)

- (file d) define(A, 1) define(B, `A \$1 define(`A', eval(A+2))') A B A B(1) A B(2)
- (file e) define(A, 1) define(B, ``define(\$1, eval(A))'define(`A', eval(A+1))') B(C) A B(D) A

(4x3)

2. Consider bit-wise operations. You are allowed to use only 'and', 'andn', 'or', 'orn', 'xor', and 'xnor' as instructions.

а	1	0	0	1	1	first argument
<u>b</u>	1	0	1	0	1	second argument
f1	I	1	1	1	1	_
om						
xnor						

(a) Fill in the values for 'orn' and 'xnor'.

(b) Implement the following. f1 %a_r, %b_r, %c_r

(c) Implement the instruction which negates the four least significant bits of %10 with remaining bits unchanged.

(d) Implement the instruction which sets bit1, bit2, bit4 of %10 to zero with remaining bits unchanged.

(5x2)

3.

(a) What binary number does this hexadecimal number represent: 37fedcba ?

(b) What octal number does this hexadecimal number represent: 37fedcba ?

(c) Write the 8-bit two's complement representation of a negative number that has no corresponding positive number.

(d) Write the range of the signed numbers that can be represented by a 4digit hexadecimal number. You may use the exponential notation.

(e) Write the 4-digit 16's complement representation of -m where m is the following hexadecimal number: 30fb.

(5x3)

A:

4. We run gdb on the executable file of a program containing the following code.

mov	-17, %10	
subcc	%10, 8, %11	! break point 1 at this address
add	%l0, 51, %l2	^
bl	Α	
add	%10, 2, %10	
sub	%11, 20, %11	
.globa	al A	
add	%12, 7, %12	! break point 2 at this address

- (a) What is the output at break point 1 for p/t\$10?
- (b) What is the output at break point 1 for p/x\$10?
- (c) What is the output at break point 2 for p/x\$10?
- (d) What is the output at break point 2 for p/x\$11?
- (e) What is the output at break point 2 for p/x\$12?

(5)5. In the following, acronyms are not accepted.(a) Write the classical von Neumann cycle.

(b) Write the von Nuemann cycle for a RISC architecture with one less number of components.

(6)

6. Consider the following expression:

 $a \cdot x^4 + b \cdot x^3 + c \cdot x + d$

Using Horner's algorithm, write simple SPARC assembly code to put in %10 the value of the expression for x = e. a, b, c. d, and e are in %a_r, %b_r, %c_r, %d_r, %e_r. Fill all delay slots with useful instructions.

 (\mathcal{I})

7. Assume that you have a macro *pred* to return the predecessor of a given natural number. Define a macro *diff* which returns a-b if a>b otherwise 0 when given as *diff*(a,b) with natural numbers a and b.