
CSci 115 Midterm
Summer 2000

39 points
There are 16 problems. You are not required to do all of them.

Total of 11 pages.
Show your work.

1. (2 points) Using the definition of Big-Oh, show that (n + 1)(n − 1)/2 is O(n2).

2. (2 points) Let f(n) = n2 and g(n) = n log2 n. Show that g(n) is O(f(n)).

3. (3 points) Linked List: Consider the list whose elements are of the type defined as follows:

/* C/C++ version 1 */
struct list {

int key;
struct list *link;

};

struct list x;

Alternatively, you may declare your own list structure, but please stay with the specifications.

Write a recursive function member in C or C++ to test whether a is a member of the list x (i.e.,
whether an element with the key a occurs in the list x). If so, then deliver the value true, otherwise
false.

4. (3 points) Knapsack Algorithm 0/1: Let us consider a recursive solution to a simplified version of the
classical knapsack problem in which we are given target t and a collection of positive integer weights
w1, w2, . . . , wn. We are asked to determine whether there is some selection from among the weights
that totals exactly t. For example, if t = 1 − 0, and the weights are 7, 5, 4, 4, and 1, we could select
the second, third, and fifth weights, since 5 + 4 + 1 = 10.

The image that justified the name “knapsack problem” is that we wish to carry on our back no more
than t pounds, and we have a choice of items with given weights to carry. We presumably find the
items’ utility to be proportional to their weight, so we wish to pack our knapsack as closely to the
target weight as we can.

You are asked to write a function knapsack that operates on an array
weights: array [1..n] of integer.

A call to knapsack(x, i) determines whether there is a collection of the elements in weight[i] through
weight[n] that sums to exactly t, and prints these weights if so.

State the recursive version of the knapsack 0/1 algorithm in pseudocode.

5. (2 points) Find the maximum profit that can be obtained by filling the knapsack with a combination
of the five objects. Each object can be used only once. Assuming that a fraction of an object may be
placed in the knapsack in order to completely fill the knapsack.

Show and explain your work.

N = 5
M = 30 (* capacity of the knapsack *)
(p1, p2, . . . , p5) = (8, 5, 10, 15, 7)

(* Profits associated with the objects *)

(w1, w2, . . . , w5) = (6, 10, 9, 5, 12)
(* Weights associated with the objects *)

6. (4 points) Give, using the “big-oh” notation, the worst case running time of the selection sort. Prove
your claim.

Selection(int a[], int N) {
int i, j, min, t;
for (i=1; i<N; i++) {

min = i;
for (j=i+1; j<=N; j++)

if (a[j] < a[min]) min = j;
t = a[min]; a[min] = a[i]; a[i] = t

}
}

7. (4 points) Give, using “big oh” notation, the worst case running time of the following function as a
function of n. Prove your claim.

function rec (n: integer): integer;
begin

if n<=1 then
return (1)

else
return (rec(n-1) + rec(n-1) + rec(n-1))

end;

8. (3 points) Backtracking Algorithm: Given an n × n board, state the backtracking algorithm for the
knight’s tour in pseudocode.

9. (4 points) Divide and Conquer: Tower of Hanoi.

The initial set up is shown in the figure below. The objective is to move the five disks to peg C. Only
the top disk on any peg may be moved to any other peg, and a larger disk may never rest on a
smaller one. Write a recursive solution in C or C++.

\#include<stdio.h>
void towers(int n, char frompeg, char topeg, char auxpeg);

main() {
int n;
scanf("%d", &n);
towers(n, ’A’, ’C’, ’B’);
return 0;

} /* end */

10. (1 point – no partial credit) Give the inorder traversal of the following tree:

11. (1 point) Calculate the external path length of the tree given in problem 1. Root is at level 1. Show
your work.

12. (3 points) Huffman’s Algorithm: You are given the following data structures declarations in Pascal.
For C or C++ users, use similar declarations.

Const maxsize = 100; maxsym = 26;
Type

treeelt = record
leftchild, rightchild, parent : integer
end;

alphabetelt = record
symbol : char;
probability : real;
Leaf : integer

forestelt = record
weight : real;
root : integer

end;
Var

TREE : array [1..maxsize] of treeelt;
ALPHABET : array [1..maxsym] of alphabetelt;
FOREST : array [1..maxsym] of forestelt;

etc.

You are given some description of two subprograms in Pascal. For C and C++ users, use the same
names for the subprograms, respectively.

procedure lightones (var least, second : integer);
(* sets least and second to the indices in FOREST of the

trees of smallest weight. We assume lasttree >= 2. *)

function create (lefttree, righttree : integer) : integer;
(* returns new node whose left and right children are

FOREST[lefttree], root, and FOREST[righttree].root *)

Write a procedure (in pseudocode) for the Huffman’s algorithm.

13. (3 points) Construction of Huffman tree.

Suppose characters a, b, c, d, e have probabilities 0.32, 0.15, 0.33, 0.08, 0.12, respectively.

Find an optimal Huffman code (1 point).

Draw the Huffman tree and detail its construction (1.5 point).

Show your work.

What is the average code length? (0.5 point)

14. (2 points) Optimal Search Tree: Given the following set of frequencies:

internal node x1 x2 x3

external node y0 y1 y2 y3

frequencey 1 5 2 3 1 4 5

Construct an optimal search tree for this data.
Show all your work.

15. (2 points) Given n nodes, write a recursive algorithm (in pseudocode) to construct a perfectly
balanced binary tree with n nodes.

16. (2 points) Fibonacci Tree Construction (using Wirth’s convention with root is at level 1):

A Fibonacci tree of height 0 is the empty tree.
Construct a Fibonacci tree with height 5. (1.75 points)
How many nodes are required? (0.25 point)

