
CSci 115 Midterm 1
Fall 2000

21 points (Form A)
There are 8 problems and 7 pages

Show your work.

1. (2 points) Using the definition of Big-Oh, show that (n + 1)(n − 1)/2 is O(n2).

2. (2 points) Let f(n) = n3 and g(n) = n2 log2 n. Show that g(n) is O(f(n)).

3. (3 points) Linked List: Consider the list whose elements are of the type defined as follows:

/* C/C++ version 1 */
struct list {

int key;
struct list *link;

};

struct list x;

Alternatively, you may declare your own list structure, but please stay with the specifications.

Write a recursive function member in C or C++ to test whether a is a member of the list x (i.e.,
whether an element with the key a occurs in the list x). If so, then deliver the value true, otherwise
false.

4. (3 points) Knapsack Algorithm 0/1: Let us consider a recursive solution to a simplified version of the
classical knapsack problem in which we are given target t and a collection of positive integer weights
w1, w2, . . . , wn. We are asked to determine whether there is some selection from among the weights
that totals exactly t. For example, if t = 1 − 0, and the weights are 7, 5, 4, 4, and 1, we could select
the second, third, and fifth weights, since 5 + 4 + 1 = 10.

The image that justified the name “knapsack problem” is that we wish to carry on our back no more
than t pounds, and we have a choice of items with given weights to carry. We presumably find the
items’ utility to be proportional to their weight, so we wish to pack our knapsack as closely to the
target weight as we can.

You are asked to write a function knapsack that operates on an array
weights: array [1..n] of integer.

A call to knapsack(t, i) determines whether there is a collection of the elements in weight[i] through
weight[n] that sums to exactly t, and prints these weights if so.

State the recursive version of the knapsack 0/1 algorithm in pseudocode.

5. (2 points) Find the maximum profit that can be obtained by filling the knapsack with a combination
of the five objects. Each object can be used only once. Assuming that a fraction of an object may be
placed in the knapsack in order to completely fill the knapsack.

Show and explain your work.

N = 7
M = 15 (* capacity of the knapsack *)
(p1, p2, . . . , p7) = (5, 15, 10, 6, 7, 17, 4)

(* Profits associated with the objects *)

(w1, w2, . . . , w7) = (3, 5, 2, 1, 7, 4, 1)
(* Weights associated with the objects *)



6. (3 points) Give, using the “big-oh” notation, the worst case running time of the selection sort. Prove
your claim.

Selection(int a[], int N) {
int i, j, min, t;
for (i=1; i<N; i++) {

min = i;
for (j=i+1; j<=N; j++)

if (a[j] < a[min]) min = j;
t = a[min]; a[min] = a[i]; a[i] = t

}
}

7. (3 points) Give, using “big oh” notation, the worst case running time of the following function as a
function of n. Prove your claim.

function rec (n: integer): integer;
begin

if n<=1 then
return (1)

else
return (rec(n-1) + rec(n-1))

end;

8. (3 points) Divide and Conquer: Tower of Hanoi.

The initial set up is shown in the figure below. The objective is to move the five disks to peg C. Only
the top disk on any peg may be moved to any other peg, and a larger disk may never rest on a
smaller one. Write a recursive solution in C or C++.

\#include<stdio.h>
void towers(int n, char frompeg, char topeg, char auxpeg);

main() {
int n;
scanf("%d", &n);
towers(n, ’A’, ’C’, ’B’);
return 0;

} /* end */


